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Abstract. We generalise the standard theory of nuclear spin relaxation to situations in which 
the Markovian approximation is not applicable. Expressions for generalised frequency- 
dependent spin relaxation functions are presented. We show that under high-field conditions 
the relaxation of longitudinal magnetisation is exponential independent of the particular 
time dependence of the correlation functions. 

1. Introduction 

The modern theory of spin resonance and relaxation [ l ,  21 leads to a non-Markovian 
equation of motion for the spin-density matrix. However, explicit expressions for the 
relaxation functions are always given in the short-correlation-time limit: it is assumed 
that the relevant time correlation functions decay on a much shorter timescale than the 
experimental one. It is well known that this Markovian approximation does not hold in 
many situations of interest, e.g. in supercooled liquids and solids at low temperatures. 

We therefore avoid making the Markovian approximation and present closed 
expressions for the generalised frequency-dependent relaxation functions. 

The paper is organised as follows. In section 2 we briefly recall the derivation of 
the equation of motion for the spin-density matrix and the approximations implied. 
Following a procedure developed by Gabriel [3], we expand the density matrix into 
statistical tensors and calculate the relevant perturbation factors in section 3. Section 4 
is devoted to the specific problems of quadrupolar and dipolar relaxation, for which 
analytical expressions for the frequency-dependent relaxation functions are presented 
in terms of Laplace transforms. Finally, we relate our results to those obtained by the 
Redfield theory and show that our treatment reveals an exponential decay of longitudinal 
magnetisation even for slowly decaying time correlation functions. Deviations from this 
behaviour are only to be expected for extremely short measuring times. 

2. The equation of motion for the spin-density matrix 

In this section we briefly recall the derivation of the equation of motion for the density 
matrix of a spin system coupled weakly to its surrounding (lattice) in terms of a standard 
projection-operator technique [MI. We will only consider systems of like spins. 
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The Hamiltonian is of the form 

H = H o  +HIL=HI  + H L + H I L  (1) 
where HI, H L  and HIL represent the Hamiltonians of the isolated spin system, the isolated 
lattice and the spin-lattice interaction, respectively. HIL is usually decomposed into a 
static and a fluctuating contribution, the former of which, averaged over lattice degrees 
of freedom, supplements the nuclear spin Hamiltonian: 

H = H t , + A H I L = H i  +HL+AHIL 

Hf = HI + (HIL)L 

AHIL = HI - WIL)L 

W I L ) L  = TrL [ P L  (T)HILI. 

(2) 

where 

(3) 
Here, pL(T)  denotes the lattice density matrix at a given temperature T. 

In the following we shall assume that HI represents the Zeeman interaction of the 
spin system with a constant external magnetic fieldBo. We did not include transverse RF 
fields in HI, since we are interested in experiments performed by pulse techniques in this 
paper. Therefore, we exclude phenomena like saturation from our considerations. The 
more general case has been discussed e.g. by Argyres and Kelley [6]. 

HIL (and AHIL) is decomposed as usual in terms of irreducible tensor operators, 

HIL = Z ( - 1 ) Q u K Q v K - Q  (4) 
KQ 

where U and V are spin and lattice operators, respectively. 
Regarding the interpretation of Hi  , the following remark is of importance. If one is 

dealing with powdered samples, the spectrum (HIL),contains a superposition of different 
frequencies due to the various orientations of the relevant coupling tensors relative to 
the main magnetic field (in *H NMR, we observe the so-called Pake spectrum). The spin 
system under consideration consists of all spins which interchange energy. This means 
that we have to distinguish two extreme situations. 

One case is represented by a system where spin diffusion is effective over the whole 
sample, rendering the spin system ergodic. Here, Hi stands for the Hamiltonian of the 
whole spin system. This situation is met in most protonated systems, disregarding energy 
or symmetry restrictions on the spin diffusion [7]. 

In the other extreme, spin diffusion is only effective within one frequency line of the 
powder spectrum and is quenched between different ones. Thus, the spin system is not 
ergodic and has to be divided into subsystems of spins, which are ‘on speaking terms’. 
Each of these subsystems is then represented by a different Hamiltonian Hi according 
to equation (2). Consequently, all observables have to be properly averaged at the end 
of the calculation (see e.g. [SI). 

An example of the latter behaviour is given by the heterogeneous ’H spin-lattice 
relaxation in perdeuterated amorphous samples [9]. 

The Liouville-von Neumann equation for the density matrix W(t) reads 

a,lWt)> = - ww)) (5 1 
where L is the Liouvillian (see appendix 2). 

In order to eliminate the lattice degrees of freedom, the projection operator 

P =  P L ( T ) T ~ L  (6) 
is applied to equation ( 5 )  and the density matrix is decomposed into a relevant and an 
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irrelevant part. Using standard techniques, the following equation of motion for the 
spin-density matrix a(t) = Tr,W(t) is obtained: 

a,Io(t)) = -iL; la(t)) - 1, dzK(t)la(t - t)). (7)  
0 

In deriving (7) ,  the following assumptions have been made. 
(i) The lattice density matrix pL( T) occurring in equation (6) is independent of time 

and commutes with HL. This ensures [a,, PI = 0 and is accomplished e.g. by a canonical 
density matrix. Consequently, equation ( 7 )  is of zeroth order in the 'back-reaction' of 
the spin system onto the lattice, which is a reasonable approximation because of the 
large heat capacity of the lattice system (for a further discussion of this point see [lo]). 

(ii) The initial thermodynamic state of the system is such that PI W(t = 0)) = 0 holds. 
This condition is fulfilled if the lattice is initially in thermal equilibrium, a situation often 
encountered in NMR experiments (see, however, [l]). 

In equation (7 ) ,  the kernel K_(z) is given by 
K ( z )  = Tr, [ALILS(T)ALILPL (731 

- S(t) = exp[-i(l - P)Lz] 

(8) 

(9) 
where 

for time-independent L;  . 
In the following we restrict ourselves to situations where the magnetic field Bo is 

high enough to justify a second-order approximation with respect to the spin-lattice 
interaction. The relaxation kernel then reads 

Here, we consider second-rank tensor interactions only (dipole-dipole and quadrupolar 
interactions). (The magnetic case is completely analogous. The relevant expressions for 
the relaxation functions are easily obtained by generalising the expressions of [3] in a 

KO ( r )  = TrL [Ab, exp( - iL;, )&LP L ( TI]. (10) 

straightforward manner.) 
Hence HI, is written as usual 1111 as 

2 

y = - 2  
H I L  = CL 2 (-l)~R;-yT$y.  

In this expression, A. = Q means quadrupolar interaction and A. = D means dipolar 
interaction. The coupling constants are given by 

CD = -2yfh eQ 
21(21- 1)h 

CQ = 

where eQ and yI denote the quadrupolar moment and the gyromagnetic ratio of 
the nuclei, respectively. For further properties of the coupling Hamiltonians, see 
appendix 1. 

The equation of motion (7)  is now solved formally by means of Laplace transforms 
r61: 

bY 

la(s)> = _U(s)la(O)) = [SE + iL; + Ko(S)l-l lo(s)> (13) 
which is correct up to second order in A&, for all times. Here, the kernel KO($) is given 

Z&(s) = [ d z  e-SrKo(t) 

2 

= 2 (-1)p 1- dof'&t[(s - io)& + iLi1-l 
2n y,yn -2 --3o 
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The meaning of the symbols A_, A and A is explained in appendix 2. 
The spectral densities and time correlation are defined according to: 

J i , p r ( o )  = Im d t  e-iotgi,pj(z) 

.fi+((o) = I-m dte-i"tg~,, ,(z) 

--13 

--m 

and 

' (15) 

Equation (14) has been derived by Gabriel [3]. 
The Redfield equation is obtained by applying the Markovian approximation to the 

equation of motion, equation (7 ) ,  and using Ko(z)  instead of &(t) therein. This is 
accomplished by replacing la(t - z)) = exp(il; z)la(t)) and pushing the upper limit of 
the integral to infinity. The latter approximation is allowed only if the kernel KO has 
decayed to zero within the time t. 

This way, one finds 

e,la(t)) = - ( i l{  + C]K)lo(t)) (17) 
with 

R_ = Ioz d t  K 0 ( t )  exp(il1 t). 

Here, the real and imaginary parts of 
renormalisation (frequency shift), respectively. 

of multipole operators, representing the states of the spin system. 

give rise to damping (relaxation) and energy 

In the next section, we shall calculate the matrix elements of equation (13) in a basis 

3. The matrix elements of the resolvent 

To evaluate these matrix elements, the density operator a(s) is expanded into Fano's 
statistical tensors according to appendix 2. 

From equation (13), we find, omitting the superscript A. for brevity, 
21 k' 

with perturbation factors 

is needed. 
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With the aid of the structure constants [12] defined in appendix 2, we find for the 
matrix elements: 

2 

Att:(s)  = (s - iqWO)8k,k’8q,q’ + icA 2 (-1)’(R4-p)LB’Ek,:t f (TkqIKO(S)ITk’q’). 
p = - 2  

(22) 
Here, the second term on the right-hand side determines the frequency spectrum. Since 
this is given to a very good approximation by the secular part of (HIL)L in most cases of 
interest [13], we will drop the terms ,U # 0 from the sum in this term in the following. 

Furthermore, we have made use of 

qSq’,qSk’,k* 

The last term in (22) is evaluated according to (14) and yields 

(24) x B p , Q , q [ J p , p ,  2Klk  (w)B2_k;:b2 + ~fp,p’(U)C?y:h~]. 
From the structure constants it is evident that the values of K1, Q , ,  K2 and Q2 are 
determined by selection rules (see appendix 2). 

The spectral densities J P J w )  andJp,,,(o) are related by the fluctuation-dissipation 
theorem [14]. Since it can be shown [15] that the terms containing .fP,,,(w) in (14) and 
(24) lead to an approach of equilibrium, we will drop them in the following. One 
condition necessary for doing so is the high-temperature approximation for the spin 
system ( lHIJ 4 k T )  [15]. If in addition JHLI Q kT holds, these terms vanish by the 
definition of the spectral densities, equation (15). In dropping these low-temperature 
terms from (24), we have to replace all expectation values of the Tkq by the deviation 
from their equilibrium values; this will be done implicitly in the following. 

(TK1Q11 [(s-iu)E+iL; 1 I T K ~ Q ~ ) = ( ~ - ~ ~ - ~ Q ~ ~ O ) ~ K ~ , K ~ ~ Q ~ , Q ~  + ~ C A ( R ~ O ) L & ~ $ ~ .  

To go on, we have to invert the matrix 

(25) 
We will restrict ourselves to values k s 2 in the following calculations. This is not 
necessary, but simplifies the resulting expressions considerably. Under this condition, 
the last term on the right-hand side of equation (25) is given by the ‘local fields’: 

Insertion of the inverse of (25) into (24) under the restriction to axially symmetric systems 
[3] or random processes [ 161 ( J p J  w )  = dp, -Jp(w)) yields the following expressions for 
the matrix elements of the kernel &(s) (dropping the low-temperature term): 
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and 

Insertion of (27) and (28) into equation (22) for the matrixA finally gives the perturbation 
factors (20) via inversion. 

The matrixA has a simple structure, due to the restrictions mentioned above. None 
of these will change the physical situation significantly. 

Instead of giving expressions for the perturbation factors in the general case, we 
continue by considering two specific examples of spin relaxation, namely quadrupolar 
relaxation of spin-1 particles and dipolar relaxation. 

4. Quadrupolar relaxation (I  = 1) and dipolar relaxation 

In this section we shall give explicit expressions for the frequency-dependent relaxation 
functions for the cases of quadrupolar relaxation of spin-1 particles and for dipolar 
relaxation. In the latter case our formulae will be correct only if the highest orientation 
of the spin system is described by statistical tensors of second rank, i.e. no octupolar 
order exists (for protons, this has also been called three-spin order [17]). This situation 
is met if we restrict ourselves to dipolar coupled pairs of spin-1/2 particles or if we assume 
the spin temperature concept to hold. It is easy to show [ll] that in the Markovian limit 
the existence of a spin temperature implies (T3J = TrI[a(t)T3,] = 0. We assume that the 
same condition is fulfilled if a(t) obeys the non-Markovian equation of motion, equation 

Of course, the formalism of the preceding sections is the same for higher orders of 
orientation, which occur in the case of quadrupolar relaxation of spins > 1 and for 
dipolar relaxation in the more general case. In this paper, however, we focus on the 
relaxation behaviour of observables, which obey generalised Bloch equations. 

In treating quadrupolar and dipolar relaxation in the same way, one has to keep in 
mind the different normalisations of the corresponding coupling Hamiltonians (see 
appendix 1). The consequence is for A = D that the trace operation, TrI, has to be 
normalised in order to be able to use the structure constants given in appendix 2. This 
implies multiplication of the corresponding expressions (equations (27) and (28)) by a 
factor (S)Z(Z + l ) ,  which may be absorbed in the coupling constant C,. 

Inserting the values of the structure constants for Z = 1 into equations (27) and (28) 
leads to the matrix elements of the kernelZ&(s) collected in appendix 3,  equation (A3.  l ) ,  
with the following definition of 'local fields': 

I = Q  
A = D  

Here, the angles involved are defined in appendix 1 and r is the distance of the two spins 
under consideration. For A = D, we have of course to sum over all spins. 

The perturbation factors are calculated according to equation (20) and are given 
explicitly in appendix 3,  equation (A3.2). From this it is seen that only the decay of two 

(7) 

oQ = P(e2qQ/4fi)(3 COS' P Q  - 1 - 

OD = $ ~ ? r - ~ ( 3  cos2 P D  - I). 

sin2 Pa COS 2 a Q )  
(29) 
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quantumcoherencesis not coupled to the time evolution of any other order of coherence. 
All other observables do not obey generalised Bloch equations in this case, e.g. 

Making the usual assumption of vanishing local fields wA, we obtain for the per- 
V l q  (4) = G;f,(s)(Tlq(O)) + G;;(wZq(o)). 

turbation factors: 

G:$(s) = [s - iqwo + K:(s)]-'Bk,k,Bq,qj 

K:(s) = ( T k q I K O ( S ) I T k q ) .  

(30) 
where we have used the abbreviation 

Introducing the Hilbert-Stieltjes transform of the spectral densities as 

we obtain the following expressions for the time evolution of the different orders of 
coherence: 

where we have introduced the new variable sq = s - iqoo; this represents a trans- 
formation to a coordinate system rotating with angular frequency qw0. 

Equations (32)-(36) represent the essential result of the present treatment. These 
have the form of generalised Bloch equations. Instead of the usual relaxation rates 
(matrix elements of & in equation (18)) we have generalised relaxation functions, which 
are Laplace transforms of memory functions. If we set sq to zero in the arguments of the 
spectral densities Jiq, we obtain Bloch equations with the standard expressions for the 
relaxation rates [IS]. In the case of the zero quantum coherences, (Tko), the Laplace 
parameter s ('inverse measuring time') appears only in combination with multiples of 
the Larmor precession frequency. This means that for 1w0I % Is1 these quantities decay 
exponentially in time with the decay rates defined as usual. For example, for A = D, we 
have in this case 

2 

I / T ~  = ~ Y $ ~ z ( z  + 1) p2Jp(ipoo). (37) 
p =  -2 

(In equation (32), KA(0; o0) = T;'.) 
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5. Discussion 

In avoiding the Markovian approximation we have extended the range of applicability 
of spin relaxation theory to situations in which the correlation times are not short 
compared to the timescale of an NMR experiment. 

The remaining restriction is determined by the second-order approximation for the 
spin-lattice interaction. This means that the expressions are only valid in the high-field 
limit. 

Detailed discussions of the lineshape problem (decay of transverse magnetisation) 
have been given in the literature [ l ,  2,19-211 and it has been pointed out that both 
memory effects [ l ,  2,191 and higher-order corrections to the Redfield theory [20,21] 
have to be taken into account in extreme physical situations. Therefore, our treatment 
is not applicable in the slow-motion regime in liquids. 

(However, for the interpretation of FID (or solid echo) data in the motional narrowing 
regime, the Markovian limit of the expressions collected in appendix 3 should be used 
instead of equation (34) in the case of structured powder spectra, e.g. Pake spectra.) 

We will focus on spin-lattice relaxation in the following discussion. 
It is evident from equation (32) that our results differ from those obtained from the 

Redfield theory-besides the inherent statistical assumptions of that theory-by the 
dependence of the spectral densitiesupon the complex arguments (s + ivwo). Therefore, 
the inverse Laplace transform of (32) will only be an exponentially decaying function of 
time if we can neglect the dependence of K i ( s ;  w o )  = T;'(s; w o )  defined in equation 
(32) upon s. 

Let us consider first of all the simple example of an exponentially decaying time 
correlation function g,(t) - exp(-l t l / zc ) ,  characterised by the correlation time z,. In 
this case, we find for the spectral densities 

J , ( S  + ipwo) = I R & ( O ) ~ ~ [ ( ~ ; '  + s) + ipwo]/[(t;' + s)' + ( p ~ ~ ) ~ ]  (38) 
the real and imaginary parts of which give rise to damping (relaxation) and second-order 
energy renormalisation (frequency shift), respectively. 

An expression analogous to (38) has been given by Stockmann [22] within the 
framework of a statistical theory for interstitially diffusing probes in the limit of rapid 
diffusion. 

Of course, if A = D, (38) has to be summed over the spins under consideration and 
t, has to be interpreted in an appropriate manner. 

From equation (38) it is seen that J ,  becomes independent of the Laplace parameter 
s for times t long compared to the correlation time z, (or for short correlation times). 
This is exactly the condition necessary to push the upper limit of the integral appearing 
in the equation of motion, equation (7), to infinity, since z, characterises the decay time 
of the kernel K ( s ) .  In the motional narrowing regime, this condition is fulfilled in a 
typical NMR experiment. However, at low temperatures, very long correlation times can 
be found (i.e. z,wo S 1). Forthissituation, we again findsindependent spectraldensities, 
provided the time is long compared to the inverse Larmor precession frequency (Is1 4 

Another example for a time correlation function frequently found (especially in 
glassy systems) is the stretched exponential function g,(t) - exp[ - ( I t I/z)fl], where p 
varies from 0 to 1 and t is a mean correlation time. This function decays much slower 
to zero than the exponential one characterising a Debye process. Consequently, the 
Markovian approximation is not applicable even for short correlation times z compared 

b o 1  1. 
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to z, in the previous example (and the definition of a narrowing condition is not straight- 
forward). Nevertheless, if the time tis long compared to the inverse Larmor frequency, 
again an exponential decay of longitudinal magnetisation is observed. 

The same arguments hold for more general examples of time correlation functions. 
The crucial point is that the inverse Larmor precession frequency determines an ‘intrinsic 
timescale’ for NMR relaxation experiments. Since c u i ’  is of the order of microseconds, a 
non-exponential decay of longitudinal magnetisation will not be observed in a real 
experiment, independent of the form of the time correlation function. This also holds 
for time correlation functions that do not decay exponentially in a wider sense (the 
Kohlrausch function might be seen as a superposition of exponentially decaying func- 
tions with a mean decay time z). Deviations from this behaviour are only to be expected 
for extremely short measuring times and might also be covered by experimental artefacts. 

We conclude with the fact that the present treatment clearly demonstrates the 
applicability of conventional spin-lattice relaxation theories for a variety of physical 
situations not considered in detail so far. 
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Appendix 1. Coupling Hamiltonians 

The spin-lattice interaction reads in irreducible tensor operator notation [ 111: 
2 

H I L  = CA C. (-l)pRR:-,Tqp. (Al.  1) 

For A = Q (quadrupolar interaction) and A = D (homonuclear dipolar interaction) the 
coupling constants are given by 

p = - 2  

CD = - 2 y 3  eQ c -  - 21(21- 1)h 
(A1.2) 

where e& and yI denote the quadrupolar moment and the gyromagnetic ratio of the 
nuclei, respectively. 

The spin operators T4, are normalised according to 

(A1.3) 

This different normalisation may be absorbed in a different normalised trace operation. 
However, care has to be taken in interpreting the resulting expressions, since we have 
by virtue of the Wigner-Eckart theorem: 

(TLJ = a w  

a: = !d(I+ 1) a: = 
(A1.4) 

These differences are not considered explicitly in the text; therefore we omit the super- 
script A and write T2, for A = Q and for A = D. 
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The coupling tensors AR& are given by (see equation (2)): 
2 

fw, =a, - ( R $ L  a, = 2 Dl2,'(Q,)P:,. (A1.5) 

Here, D$2,'(QA) is a Wigner rotation matrix, QA is the set of Eulerian angles (aA, BA, yA)  
required to transform the principal-axes fixed frame to the laboratory fixed frame and 
the pip denote the irreducible components of the coupling tensors in the principal-axes 
fixed frame, given by [ 111 

U = - 2  

where the symbols have their usual meaning [ 111. 

responsible for the spectrum reads for I = 1: 
With the definition of the 'local fields' (equation (26)), the truncated Hamiltonian 

(A1.7) 

Also the Zeeman Hamiltonian may be written in terms of irreducible tensor operators: 

Appendix 2. Superoperators; multipole operators 

We define superoperators by [23] 

AID) = (AB) AlW = I[A,Bl-) AlB> = I[A,Bl+) (A2.1) 

and especially the Liouvillian: 

L K  : = (l/fi)& K = 0, I, L, IL. (A2.2) 

The identity is defined by EIB) = /B)  and the scalar product is as usual 

(AIB) = Tr(A'B). (A2.3) 

Further properties of Liouville space may be found in modern textbooks on NMR [ 1,2]. 
Expansion of the density matrix into statistical tensors [24] yields: 

21 k 

l a ( t ) >  = 2 2 ( T I q ( t ) ) l T k q )  (A2.4) 
k = O  q = - k  

with statistical tensors 

(TLq ( t ) )  = ( T k q  la(t)> = TrI [TLqa(t)]* (A2.5) 
The multipole operators or irreducible tensor operators obey the following nor- 
malisation and completeness relations, respectively [3]: 

(A2.6) 

For the calculation of the perturbation factors (see section 3), matrix elements of the 
type (Tkql [Tk lq , ,  Tk2q2]5) are to be evaluated. Since the (anti)commutator of two multi- 
pole operators can always be expressed in terms of multipole operators, these matrix 
elements just give the corresponding factors of proportionality. We follow Gabriel in 
denoting these matrix elements as the structure constants of the Lie algebra covered by 
the T k q .  
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The values of the matrix elements are given by [12] 

(Tkqlfk1qlITk*42) = B:;:;: (A2.7) 

with 

(A2.8) 

denote 6j-symbols and CIebsch-Gordan coefficients, respectively [25]. It is evident by 
definition that the structure constants vanish for kl + k2 - k even and if the selection 
rules arising from the 6j-symbols and the Clebsch-Gordan coefficients are not fulfilled. 

Some symmetry properties are given for convenience: 

(A2.9) 

The matrix elements including the anticommutator are also easily expressed in terms of 
slightly different structure constants: 

As is evident from equation (A2.10), these structure constants vanish for kl + k2 - k 
odd. For a further discussion see [3]. 

Using the same notation Tk4 for A = Q and A = D, we have to take care with respect 
to the meaning of I here. For A = Q, I is the spin quantum number of the nucleus, 
whereas for A = D it represents the total spin of the interacting nuclei. 

Appendix 3. The perturbation factors G!$(s) for Z = 1 

Insertion of the values of the structure constants for I = 1 (e.g. B:::24 = -lhC(212, 
q lq2q) )  into the expressions (27) and (28) for the matrix elements of the kernel &(s) 
yields 

K y '  = ( ~ k 4 1 K O ( S ) I T k ' q )  

a p ,  i 2  + 
s - i (o  - p o o )  
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From these we find for the perturbation factors via inversion of the matrix A given in 
equation (21) the following expressions: 

Gg(s) = X [ s  + Ki2(s ) ]  
G#(s) = X [ s  + KA'(s)] 
G$,(s) = G$,(s)= -XK;'(s) 
X =  {[s + Kbl(s)][s + K;2(s)] - [K;'(s)]2}-1 

GYl,Tl(s) = Y,[s 7 iwo + K?l(s)] 
G21,+l(s) = Y,[s T io0 + K1,'1(s)] 
G\21,+l(s) = G$ll,,l(s) = - Y,[+iwA + KT1(s)] 
Y ,  = {[s T i o o  + ~ \ ~ ~ ( s ) ] [ s  3 iwo + K ~ , : ( s ) ]  - [iwi + KY~(~(s)]~}-~ 
G$!2,+2(s) = [s T 2iw0 + K22(s)]-1. 

(A3.2) 

The assumption of vanishing 'local fields' wA leads to 

s - i(w - pwo) 
1 

r, 
s - i(w - pwo) 

[s - i(w - pwO)l2 + wfi 

and 

K;k'(s) = K i ( S ) d k ' k  G;J:(s) E G i $ ( ~ ) G k i k .  
This finally yields the expressions given in section 4 in the text (equations (30)-(36)). 
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